Lentivirus Cas9 Expression Vector

Overview

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) nuclease expression vectors are among several types of emerging genome editing tools that can quickly and efficiently create mutations at target sites of a genome (the other two popular ones being ZFN and TALEN).

Cas9 is a member of a class of RNA-guided DNA nucleases which are part of a natural prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and bacteriophage. Within the cell, the Cas9 enzyme forms a complex with a guide RNA (gRNA), which provides targeting specificity through direct interaction with homologous 18-22nt target sequences in the genome. Hybridization of the gRNA to the target site localizes Cas9, which then cuts the target site in the genome.

To achieve CRISPR-mediated gene targeting it is essential for the target cells to co-express Cas9 and the target site-specific gRNA at the same time. This can be accomplished by either expressing both Cas9 and the gRNA sequence from the same vector (a.k.a. all-in-one vector) or by using separate vectors for driving Cas9 and gRNA expression (Cas9 only and gRNA only vectors, respectively). The advantage of using separate vectors over an all-in-one vector for expressing Cas9 and gRNA is that it offers the flexibility of using different gRNA expression vectors in conjunction with a variety of Cas9 variants (wild type nuclease, Cas9 nickase, dCas9, etc.) depending upon the user’s experimental goal. Additionally, using a separate Cas9 expression vector allows generation of stable cell lines or organisms with high levels of Cas9 expression which can then be transduced with the desired gRNA sequences. This approach can help to achieve better targeting performance than compared to an all-in-one CRISPR vector due to uniform and high-level of Cas9 expression in all cells.

The lentivirus Cas9 expression vector is a highly efficient viral vehicle for permanently introducing Cas9 into difficult-to-transfect mammalian cells. A lentiviral Cas9 vector is first constructed as a plasmid in E. coli. It is then transfected into packaging cells along with several helper plasmids. Inside the packaging cells, vector DNA located between the two long terminal repeats (LTRs) is transcribed into RNA, and viral proteins expressed by the helper plasmids further package the RNA into virus. Live virus is then released into the supernatant, which can be used to infect target cells directly or after concentration. When the virus is added to target cells, the RNA cargo is shuttled into cells where it is reverse transcribed into DNA and permanently integrated into the host genome, leading to the expression of Cas9 from the user-selected promoter.

By design, our lentiviral vectors lack the genes required for viral packaging and transduction (these genes are instead carried by helper plasmids used during virus packaging). As a result, virus produced from lentiviral vectors has the important safety feature of being replication incompetent (meaning that they can transduce target cells but cannot replicate in them).

We offer multiple variants of the most widely used SpCas9 derived from Streptococcus pyogenes, to help you find the right Cas9 suitable for your experimental design. These include - hCas9, the standard humanized version of wild type SpCas9  which efficiently generates double-strand breaks (DSBs) at target sites; hCas9-D10A, the “nickase” mutant form of hCas9 which generates only single-stranded cuts in DNA; dCas9, a catalytically inactive variant of SpCas9, bearing both D10A and H840A mutations; SpCas9-HF1, a high-fidelity variant of SpCas9; and eSpCas9, an enhanced specificity variant of SpCas9. Fusions of dCas9 with activation domains such as dCas9/VP64 and dCas9/VPR or with repression domains such as dCas9/KRAB are also available for CRISPRa and CRISPRi applications respectively. Additionally, we offer SaCas9 derived from Staphylococcus aureus for applications requiring a shorter Cas9 variant compared to SpCas9 and AsCpf1 derived from Acidaminococcus for achieving DNA cleavage via staggered DNA double strand breaks.

For further information about this vector system, please refer to the papers below.

References Topic
Science. 339:819 (2013) Description of genome editing using the CRISPR/Cas9 system
Nat. Biotech. 31:827 (2013) Specificity of RNA-guided Cas9 nucleases
Nat. Commun. 9:1911 (2018) Review on various Cas9 variants
Science. 343:84 (2014) Lentivirus-based CRISPR/Cas9 targeting

Highlights

Our lentivirus Cas9 expression vector is derived from the third-generation lentiviral vector system. This system is optimized for high copy number replication in E. coli, high-titer packaging of live virus, efficient viral transduction of a wide range of cells, and efficient vector integration into the host genome. The lentivirus Cas9 expression vectors are designed to drive high-level permanent Cas9 expression under a user-selected promoter to achieve highly efficient CRISPR targeting when used in conjunction with DNA target site-specific gRNA sequences. We offer a variety of Cas9 variants to help you select the right one suitable for your experimental design.

Advantages

Flexibility: The Cas9 only vector can be co-transduced with multiple different gRNA sequences for targeting different genomic sites of interest. Additionally, it also provides the option to establish stable cell lines with high-level Cas9 expression by FACS or antibiotic selection which can subsequently be transduced with the desired gRNA sequences for achieving highly efficient CRISPR targeting.

High viral titer: Our vector can be packaged into high-titer virus (>109 TU/ml when virus is obtained through our virus packaging service). At this viral titer, transduction efficiency for cultured mammalian cells can approach 100% when an adequate amount of viral supernatant is used.

Very broad tropism: Our packaging system adds the VSV-G envelop protein to the viral surface. This protein has broad tropism. As a result, cells from all commonly used mammalian species (and even some non-mammalian species) can be transduced. Furthermore, almost any mammalian cell type can be transduced (e.g. dividing cells and non-dividing cells, primary cells and established cell lines, stem cells and differentiated cells, adherent cells and non-adherent cells). Neurons, which are often impervious to conventional transfection, can be readily transduced by our lentiviral vector. Lentiviral vectors packaged with our system have broader tropism than adenoviral vectors (which have low transduction efficiency for some cell types) or MMLV retroviral vectors (which have difficulty transducing non-dividing cells).

Relative uniformity of vector delivery: Generally, viral transduction can deliver vectors into cells in a relatively uniform manner. In contrast, conventional transfection of plasmid vectors can be highly non-uniform, with some cells receiving a lot of copies while other cells receiving few copies or none.

Effectiveness in vitro and in vivo: Lentiviral vector systems can be used effectively in cultured cells and in live animals.

Safety: The safety of our vector is ensured by two features. One is the partition of genes required for viral packaging and transduction into several helper plasmids; the other is self-inactivation of the promoter activity in the 5' LTR upon vector integration. As a result, it is essentially impossible for replication competent virus to emerge during packaging and transduction. The health risk of working with our vector is therefore minimal.

Disadvantages

Technical complexity: The use of lentiviral vectors requires the production of live virus in packaging cells followed by the measurement of viral titer. These procedures are technical demanding and time consuming relative to conventional plasmid transfection.

PAM requirement: CRISPR/Cas9 based targeting is dependent on a strict requirement for a protospacer adjacent motif (PAM), located on the immediate 3’ end of the gRNA recognition sequence. The required PAM sequence varies depending on the Cas9 variant being used.

Key components

RSV promoter: Rous sarcoma virus promoter. It drives transcription of viral RNA in packaging cells. This RNA is then packaged into live virus.

5' LTR-ΔU3: A deleted version of the HIV-1 5' long terminal repeat. In wildtype lentivirus, 5' LTR and 3' LTR are essentially identical in sequence. They reside on two ends of the viral genome and point in the same direction. Upon viral integration, the 3' LTR sequence is copied onto the 5' LTR. The LTRs carry both promoter and polyadenylation function, such that in wildtype virus, the 5' LTR acts as a promoter to drive the transcription of the viral genome, while the 3' LTR acts as a polyadenylation signal to terminate the upstream transcript. On our vector, Δ5' LTR is deleted for a region that is required for the LTR's promoter activity normally facilitated by the viral transcription factor Tat. This does not affect the production of viral RNA during packaging because the promoter function is supplemented by the RSV promoter engineered upstream of Δ5' LTR.

Ψ: HIV-1 packaging signal required for the packaging of viral RNA into virus.

RRE: HIV-1 Rev response element. It allows the nuclear export of viral RNA by the viral Rev protein during viral packaging.

cPPT: HIV-1 Central polypurine tract. It creates a "DNA flap" that increases nuclear importation of the viral genome during target cell infection. This improves vector integration into the host genome, resulting in higher transduction efficiency.

Promoter: The promoter that drives the expression of the downstream Cas9 gene is placed here.

Kozak: Kozak consensus sequence. It is placed in front of the start codon of the ORF of interest because it is believed to facilitate translation initiation in eukaryotes.

ORF: The open reading frame of the Cas9 nuclease variant chosen by the user.

WPRE: Woodchuck hepatitis virus posttranscriptional regulatory element. It enhances viral RNA stability in packaging cells, leading to higher titer of packaged virus.

mPGK promoter: Mouse phosphoglycerate kinase 1 gene promoter. It drives the ubiquitous expression the downstream marker gene.

Marker: A drug selection gene (such as neomycin resistance), a visually detectable gene (such as EGFP), or a dual-reporter gene (such as EGFP/Neo). This allows cells transduced with the vector to be selected and/or visualized.

3' LTR-ΔU3: A truncated version of the HIV-1 3' long terminal repeat that deletes the U3 region. This leads to the self-inactivation of the promoter activity of the 5' LTR upon viral vector integration into the host genome (since 3' LTR is copied onto 5' LTR during viral integration). The polyadenylation signal contained in ΔU3/3' LTR serves to terminates all upstream transcripts produced both during viral packaging and after viral integration into the host genome.

SV40 early pA: Simian virus 40 early polyadenylation signal. It further facilitates transcriptional termination after the 3' LTR during viral RNA transcription during packaging. This elevates the level of functional viral RNA in packaging cells, thus improving viral titer.

Ampicillin: Ampicillin resistance gene. It allows the plasmid to be maintained by ampicillin selection in E. coli.

pUC ori: pUC origin of replication. Plasmids carrying this origin exist in high copy numbers in E. coli.

Design My Vector 

Use this option to design your vector and
request cloning & downstream services.

Send Design Request 

User this option to ask our scientists to design your vector for you.